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We analyze transmission of electromagnetic waves through a one-dimensional periodic layered structure
consisting of slabs of a left-handed metamaterial and air. We derive the effective parameters of the metama-
terial from a microscopic structure of wires and split-ring resonators possessing the left-handed characteristics
in the microwave frequency range, and then study, by means of the transfer-matrix approach and the finite-
difference time-domain numerical simulations, the transmission properties of this layered structure in a band
gap associated with the zero averaged refractive index. By introducing defects, the transmission of such a
structure can be made tunable, and we study the similarities and differences of the defects modes excited in two
types of the band gaps.
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I. INTRODUCTION

Electromagnetic materials with both negative dielectric
permittivity and negative magnetic permeability have been
discussed theoretically a long time ago by Veselago[1] as a
hypothetical material termed “left handed” because the wave
vector creates a left set of vectors with the electric and mag-
netic fields. Many unusual properties of the left-handed ma-
terials such as negative refraction can be associated with
their negative refractive index, as has been demonstrated for
microwaves by several reliable experiments for the metama-
terials created by a lattice of split-ring resonators and wires
[2,3] and numerical finite-difference time-domain(FDTD)
simulations(see, e.g., Ref.[4], and references therein).

Multilayered structures that include left-handed materials
(or, in general, materials with negative refraction) can be
considered as a sequence of the flat lenses that provide an
optical cancellation of the layers with positive refractive in-
dex leading to either enhanced or suppressed transmission
[5–7]. More importantly, a one-dimensional stack of layers
with alternating positive and negative-refraction materials
with zero averaged refractive index displays an unusual
transmission band gap[6,8–11] near the frequency where the
conditionknl=0 is satisfied; such a band gap is quite differ-
ent from a conventional Bragg reflection gap because it ap-
pears due to different physics of wave reflection. In particu-
lar, the periodic structures with zero averaged refractive
index demonstrate a number of unique properties of the
beam transmission observed as strong beam modification and
reshaping[10] being also insensitive to disorder that is sym-
metric in the random variable[8].

In this paper, we study transmission properties of a
multilayer periodic stack(also called one-dimensional pho-
tonic crystal or photonic bandgap structure) created by alter-
nating slabs of two types of materials, with positive and
negative refractive indices. We also consider the same struc-
ture with an embedded defect and take into account realistic
parameters of the metamaterials such as dispersion and

losses. In spite of the fact that our calculations are presented
for the metamaterials with the left-handed properties in the
microwave domain, many of our results are rather general
and they can be also useful for other types metamaterials
[12,13], including not yet demonstrated materials operating
at THz or even optical wavelengths.

We consider a band-gap structure schematically shown in
Fig. 1. First, in Sec. II we study the properties of the left-
handed material as a composite structure made of arrays of
wires and split-ring resonators(see the inset in Fig. 1) and
derive the general results for the effective dielectric permit-
tivity and magnetic permeability. Second, we study the trans-
mission of electromagnetic waves through the layered struc-
ture consisting of alternating slabs of composite left-handed
metamaterial using the calculated effective parameters(see
Sec. III). We assume that the structure includes a defect layer
(see Fig. 1) that allows tunability of the wave transmission
near the defect frequency. Using the transfer-matrix method,
we describe the defect-induced localized states in such a
structure and reveal that the defect modes may appear in
different parameter regions and for bothknl=0 and Bragg
scattering band gaps. Depending on the defect parameters,
the maximum transmission can be observed in all or just
some spectral band gaps of the structure. We demonstrate
that the frequency of the defect mode is less sensitive to

FIG. 1. Schematic picture of a multilayered structure consisting
of alternating metamaterial slabs and air. The inset shows the unit
cell of the metallic SRR-wire metamaterial.
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manufacturing disorder for the larger defect layer. In Sec. IV
we present the results of our two-dimensional FDTD numeri-
cal simulations based on the microscopic parameters of the
left-handed material and also study the spatiotemporal evo-
lution of the transmitted and reflected fields. Finally, in Sec.
V we summarize our findings.

II. METAMATERIAL CHARACTERISTICS

We assume that the metamaterial that displays left-handed
characteristics at microwaves is created by a three-
dimensional lattice of wires and split-ring resonators(SRRs),
as shown schematically in the inset of Fig. 1. According to
the derivation presented in Refs.[14,15], the main contribu-
tion to the effective dielectric permittivity of this structure is
given mainly by the wires, whereas the magnetic response is
determined by SRRs. Although a three-dimensional lattice of
wires contains closed circuits, we neglect their contribution
to the magnetic permeability, because this effect is nonreso-
nant and, therefore, it is weak. The effective dielectric per-
mittivity of such a structure can be derived in a consistent
way [14,15], and it can be written in the form

esvd = 1 −
vp

2

vsv − iged
, s1d

wherevp<sc/ddf2p / lnsd/ rwdg1/2 is the effective plasma fre-
quencyge=c2/2sSlnsd/ rwd, s is the wire conductivity,S is
the effective cross section of a wire,S=prw

2, for d. rw, and
S<pds2r −dd, for d, rw, where d=c/Î2psv is the skin-
layer thickness.

To calculate the effective magnetic permeability of the
lattice of SRRs, we write its magnetizationM in the form
(see also Ref.[16])

M = snm/2cdpRr
2Ir , s2d

wherenm=3/d3 is the number of SRRs per unit cell,Rr is the
SRR radius(see the inset in Fig. 1), Ir is the current in the
SRR. We assume that SRR is an effective oscillatory circuit
with inductanceL and resistanceR of the wire, and capacity
C of the SRR slot. In this circuit the electromotive forceE
appears due to an alternating magnetic field of the propagat-
ing wave. Under these assumptions, the evolution of the cur-
rent Ir in single SRR is governed by the equation

L
d2Ir

dt2
+ R

dIr
dt

+
1

C
Ir =

dE
dt

, s3d

with

E = −
pRr

2

c

dH8

dt
,

whereH8 is the acting(microscopic) magnetic field, which
differs from the averaged(macroscopic) magnetic field. We
describe the SRR array as a system of magnetic dipoles,
which is valid when the number of SRRs in the volumel3 is
big enough, and use the Lorenz-Lorentz relation between the
microscopic and macroscopic magnetic fields[17]

H8 = H +
4p

3
M = B −

8p

3
M . s4d

As a result, from Eqs.(2)–(4) we obtain the effective mag-
netic permeability of the structure in the form

msvd = 1 +
Fv2

v0
2 − v2s1 + F/3d + ivg

, s5d

whereF=2pnmspRr
2/cd2/L, v0

2=1/LC, andg=R/L. Induc-
tanceL, resistanceR, and capacitanceC are given by the
following results(see, e.g., Ref.[18]):

L =
4pRr

c2 FlnS8Rr

r
D −

7

4
G, R=

2pRr

sSr
, C =

pr2

4pdg
,

where r is the radius of the wire that makes a ring,s is
conductivity of the wire,Sr is the effective area of the cross-
section of the SRR wire defined similar to that of a straight
wire, anddg is the size of the SRR slot. We note, that the
result forC should hold provideddg! r.

We take the parameters of a metallic SRR-wire composite
as d=1 cm, rw=0.05 cm, Rr =0.2 cm, r =0.02 cm, dg
=10−3 cm, and its conductivity ass=231019 s−1, and calcu-
late the effective frequency dependencies of permittivity
esvd and permeabilitymsvd according to Eqs.(1) and (5),
respectively, and show these dependencies in Fig. 2. The
resonance frequency appears near 5.82 GHz, and the region
of the simultaneously negativee and negativem is located
between the frequencies 5.82 and 5.96 GHz. The imaginary
part of the magnetic permeability, which determines the ef-
fective losses in a left-handed material, is larger near the
resonance.

III. TRANSMISSION AND DEFECT MODES

Now we consider a periodic layered structure created by a
system of seven left-handed dielectric slabs of the widtha
separated by air, as shown in Fig. 1. The number of slabs is
chosen to keep losses in the structure at a reasonably low
level, still having visible effects of periodicity. The middle
layer of the left-handed material is assumed to have a differ-
ent thickness,b=as1+Dd, becoming a structural defect.

FIG. 2. (Color online). Real part of the dielectric permittivity
Resed shown by solid lines, and the real part of magnetic perme-
ability Resmd, shown by dashed lines, for a lattice of metallic SRRs
and wires.
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To study the transmission characteristics of such a peri-
odic layered structure, we consider the scattering of a
normal-incidence plane wave described by the Helmholtz-
type equation for the scalar electric field

F d2

dz2 +
v2

c2 eszdmszd −
1

mszd
dm

dz

d

dz
GE = 0, s6d

whereeszd andmszd are the dielectric permittivity and mag-
netic permeability of a bulk material.

First, we study the correspondinginfinite structure with-
out defects and calculate its bandgap transmission spectrum.
In an infinite periodic structure, propagating waves have the
form of the Floquet-Bloch modes satisfying the periodicity
condition,Esz+2ad=Eszdexps2iaKbd, whereKb is the Bloch
wave number. Possible values ofKb are found as solutions of
the standard eigenvalue equation for a two-layer periodic
structure, as discussed in detail in Ref.[11],

2 cossKb2ad = 2 cosfskr + kldag − Spr

pl
+

pl

pr
− 2D

3sinskradsinsklad, s7d

where pr =1, pl =Îe /m, kr =v /c, and kl =Îemv /c are the
wave vectors in air and left-handed slabs, respectively. For
real values ofKb, the Bloch waves are propagating; complex
values ofKb indicate the presence of band gaps, where the
wave propagation is suppressed. The spectral gaps appear
when the argument of the cosine function in Eq.(7) becomes
the whole multiple ofp, and no real solutions forKb exist.
These gaps are usually termed as Bragg gaps. The presence
of the left-handed material in the structure makes it possible
for the argument to vanish, so that the wave propagation
becomes prohibited in this case as well, thus creating an
additional band gap, which do not exist in conventional pe-
riodic structures. As a matter of fact, the conditionukru= uklu
corresponds to the zero average refractive indexknl=0, as
discussed in Refs.[6,8–11]. However, the inherent feature of
the left-handed materials is their frequency dispersion, so
that the conditionukru= uklu defines a characteristic frequency
v* at which the indices of refraction in both the media com-
pensate each other. In a sharp contrast to the conventional
Bragg reflection gaps, the position of this additionalknl=0
gap in the frequency domain does not depend on the optical
period of the structure.

For the parameters of the left-handed composite media
described above, the critical frequencyv*, at which the av-
erage refractive index of the structure vanishes, is found as
v* <2p5.86363109 s−1. Importantly, the transmission co-
efficient calculated at the frequencyv=v* for the seven-
layer structure shows a characteristic resonant dependence as
a function of the normalized slab thicknessa/l, where l
=2pc/v*, as shown in Fig. 3. The transmission maxima
appear in the gapknl=0, when the slab thicknessa coincides
with a whole multiple of a half of the wavelength. The width
of the transmission peaks decreases with the number of left-
handed layers in the structure. The transmission maxima de-
crease with increasing thickness of the structure due to losses

in the left-handed material which become larger for thicker
slabs. One of the interesting features of the novel gap defined
by the conditionknl=0 is that the transmission coefficient
can vanish even for very small values of the slab thickness.
This property can be employed to create effective mirrors in
the microwave frequency range operating in this novelknl
=0 gap which can be effectively thinner than the wavelength
of electromagnetic waves.

The transmission coefficient of a finite periodic structure
formed by seven layers of the left-handed metamaterial is
shown in Figs. 4(a) and 4(b) as a function of the frequency,

FIG. 3. Transmission coefficient of a finite periodic structure
created by seven layers of the left-handed metamaterial vs the nor-
malized thickness of the slaba/l, wherel=2pc/v* and the fre-
quencyv=v* corresponds to the conditionknl=0.

FIG. 4. (Color online). Transmission coefficient of a finite peri-
odic structure created by seven layers of the left-handed metamate-
rial vs the incident wave frequency.(a) The structure with the pe-
riod a=0.25l, without (solid) and with (dashed) defect layersD
=−0.8d. (b) The structure with the perioda=1.25l without (solid)
and with (dashed) defect layersD=−0.6d.
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for two structures that differ by the perioda. For the quarter-
wavelength slabs[see Fig. 4(a)], the only visible band gap is
the novel gapknl=0 centered near the frequencyv*. When
this periodic structure includes a defect, the transmission
peak associated with the excitation of the defect mode is
observed inside theknl=0 gap, as shown by a dashed curve.
For the structure with thicker slabs, e.g., for the structure
with the perioda=1.25l [see Fig. 4(b)], the knl=0 gap be-
comes narrower but it remains centered near the frequency
v*. The transmission coefficient of this latter bandgap struc-
ture shows, in addition to theknl=0 gap, two Bragg scatter-
ing gaps. Due to the increased losses in this second type of
the bandgap structure where the slabs are thicker than those
in the structure corresponding to Fig. 4(a), the effects of the
resonant transmission at the defect mode become less visible.
Moreover, for the parameters considered here the defect
mode appears only in theknl=0 gap, whereas it does not
appear in the Bragg gaps. For larger thickness of the slabs,
higher-order Bragg gaps may appear in the frequency range
where the composite material possesses left-handed proper-
ties.

In Fig. 5, we show the spectrum of the defect-mode fre-
quencies for the layered structure with the perioda=1.25l as
a function of the normalized size of the defectD. We notice
a number of important features, which can also be found for
other types of such left-handed structures. First of all, the
defect modes do not always appear simultaneously in all
gaps of the spectrum and, therefore, they can be placed se-
lectively either in the Bragg gaps or the zero-index gap. Sec-
ond, the slope of the curves in Fig. 5 decreases with the
thickness of the defect layer. As a result, the eigenfrequen-
cies of the modes supported by a thicker defect layer can be
more tolerant to disorder introduced by manufacture. These
features of the defect modes excited in the zero-index gap
may be important for engineering tunable properties of the
layered structures with negative refraction. In particular, the
existence of different types of the defect modes allow to
access different types of band gaps independently.

IV. NUMERICAL SIMULATIONS

In order to analyze the spatiotemporal evolution of the
transmitted fields and the beam scattering under realistic

conditions, we perform two-dimensional finite-difference
time-domain (FDTD) numerical simulations of the beam
propagation through the left-handed periodic structure of
seven layers with a defect. We would like to point out that
the time-resolved numerical simulations are performed in or-
der to estimate the characteristic time of the defect mode
excitation, which can determine the operation time of such a
multilayer structure. This issue seems to be important be-
cause the novel type of the band gap discussed in this paper
is based on a different physical mechanism of the transmis-
sion cancellation, and it requires the vanishingaveragedre-
fractive index.

In the FDTD simulations, we consider the TM-polarized
Gaussian beam of the width 20l propagating normal to the
layered structure with the perioda=0.25l; the considered
periodic structure corresponds to the transmission coefficient
shown in Fig. 4(a) by a dashed line. The boundaries of the
simulation area are perfectly matched layers(PML’s), so that
no reflection from the boundaries takes place. The slabs of
the left-handed material do not extend to the PML bound-
aries, since the layer is perfectly matched to the air space
only. The mesh of the numerical simulation area is 100
3800 points in the transverse and propagation directions,
respectively.

First, we choose the carrier frequency of the incident field
in theknl=0 gap. The temporal evolution of the energy flows
(Poynting vector integrated over the transverse dimension)
for the incident, transmitted, and reflected waves is shown in
Fig. 6(a), clearly indicating that the transmission through
such a structure is negligible, despite the fact that in contrast
to the analytical predictions made for the continuous waves
by the transfer-matrix approach, the beam has a finite fre-
quency spectrum width. These results confirm that the zero-
index gap is realistic, and it allows to suppress the transmis-
sion even for finite layered structures and for realistic
parameters.

When the carrier frequency of the incident field is se-
lected close to the resonant frequency of the defect mode, a
significant amount of the energy is transmitted through the
structure[see Fig. 6(b)]. Although the steady state of the
transmission is not reached in the simulations and oscilla-
tions of the fields around the steady state continue at larger

FIG. 5. (Color online). Spectrum of the defect-mode frequencies
vs the normalized size of the defectD in the left-handed bandgap
structure with the perioda=1.25l.

FIG. 6. Numerical FDTD simulation results showing relaxation
processes in a band-gap structure with a defect. Solid: incident en-
ergy flow, dashed: transmitted energy flow, dotted: reflected energy
flow. The parameters are:a=0.25l, D=−0.8.(a) Defect mode is not
excited, v=2p35.863109 s−1. (b) Defect mode is excited,v
=2p35.8783109 s−1.
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time scales, one can estimate the relaxation time of the
resonance-induced transmission corresponding to the defect
mode excitation time, which is found to be of the order of
103 periods(approximately 170 ns).

In Figs. 7(a) and 7(b) we show the examples of the field
intensity distribution in the layered structure with the slab
sizea=0.25l for two distinct regimes of the beam transmis-
sion. In Fig. 7(a), the frequency corresponds to low transmis-
sion in Fig. 4(a), when no defect mode is excited. Figure 7(b)
demonstrates the field distribution in the structure with an
excited defect mode and enhanced transmission.

Based on the characteristic times of the relaxation pro-
cesses in the beam transmission simulations, we can estimate
the optimized time for the pulse propagation through the
structure. Indeed, if the temporal pulse width is smaller than
the relaxation time then the transmission should be low.
Thus, in the pulse simulations, we consider the most crucial
case when the pulse width is of the order of the relaxation
time of the structure. Results of FDTD simulations for the
pulse scattering from the multilayered structure with the pe-
riod a=0.25l are presented in Figs. 8(a) and 8(b) as the
temporal dependence of the incident, reflected, and transmit-
ted energy flows. One can still clearly see, in spite of a rela-
tively large relaxation time in the zero-index gap, a signifi-
cant amount of the transmitted power, when the carrier
frequency of the pulse coincides with the frequency of the
defect mode.

V. CONCLUSIONS

We have studied, for the first time to our knowledge, the
defect modes and transmission properties of periodic layered
structures made of slabs of a left-handed metamaterial and
air. Using realistic parameters of the metamaterial derived
from the microscopic approach, we have calculated the band-
gap spectrum of an infinite one-dimensional structure with
and without structural defects, and demonstrated the exis-
tence of forbidden gaps of two different types, the conven-
tional Bragg scattering gaps and a novel gap corresponding
to the zero averaged refractive indexknl=0.

We have analyzed the properties of the defect modes in a
finite number of layers with a structural defect and demon-
strated that, depending on the defect size, the defect modes

FIG. 7. (Color online). Results of the numerical FDTD simula-
tions for the amplitude of the magnetic field in a two-dimensional
structure (natural logarithm scale). Boxes show positions of the
left-handed slabs,a=0.25l, D=−0.8. (a) Defect mode is not ex-
cited, v=2p35.863109 s−1. (b) Defect mode is excited,v=2p
35.8783109 s−1.

FIG. 8. Numerical FDTD simulation results
for the pulse scattering by a periodic structure
with defect. Solid: incident energy flow, dashed:
transmitted energy flow, dotted: reflected energy
flow. Parameters area=0.25l, D=−0.8. (a) De-
fect mode is not excited,v=2p35.863109 s−1.
(b) Defect mode is excited,v=2p35.878
3109 s−1.
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appear in all or just some of the band gaps allowing to access
different bandgaps selectively. In addition, we have per-
formed two-dimensional numerical FDTD simulations of the
propagation of electromagnetic waves in such structures and
have studied the spatiotemporal dynamics of the beam trans-
mission and reflection. We have demonstrated that the exci-
tation of defect modes can enhance substantially the wave
transmission through the structure, however, the excitation of

the defect modes in the novel bandgap is characterized by
relatively large relaxation time.
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